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The motion of a solid body with a cavity partly filled with fluld has usually
been studied in those cases where the displacements of the free surface are
small relative to the cavity. Rumiantsev [1] for example, gives references
to this problem. In this work it is assumed that the fluid almost completely
fills the cavity and that it has a nearly spherical air bubble, The problem
consists in determination of the motion of the fluid and the bubble, as well
as determination of the motion of the solid body containing the cavity.

Let g be the bubble radius, p and yu the density and viscosity of the
fluid, respectively, o the coefficient of surface tension at the boundary
of fluid and bubble, and v a characteristic value of the fluld veloclty
relative to the cavity. The effects of viscosity on the motion may be neg-
lected if Pva > . Deviation of the bubble shape from spherical will be
small if the dynamic addition to the pressure (of the order of pv') is small
by comparison with the pressure a/h specifying the surface tension. Both

of the conditions
va>p/p, eLs/p

will be considered as fulfilled. They are satisfied for many flulds, for
water in particular, over a wide range of values of v and a . Under the
above conditions the bubble can be considered as an undeformable sphere of
radius g , and the fluld as an ideal fluid.

Such a postulation does not permit consideration of the motion when the
bubble comes into contact with the cavity walls and loses its spherical shape.

The equations of motion are here set up and certaln examples are investi-
gated.,

1. The motion of a solid body 5 with a singly connected cavity D ,
bounded by a wall surface S , is considered. An ideal incompressible fiuid of
density p 1s inside the cavity together with an undeformable moblile sphere
E of radius g and mass m (for a bubble one may put m = 0) . The ratio
/1 = ¢ ,where ! 1s the minimal distance from the center pP of the sphere
Z to the surface § of the walls; this ratio is taken to be small: a<g: 1.

Let the center of inertla of the sphere be at 1ts geometric center P .
Since the fluld is ideal, motion of the sphere relative to 1ts center P
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Motion of a solid body containing a fluid and an air bubble BW

does not affect motion of the fluid and the body 5 , and from this point of
view it 1s not substantial. Below, only motion of the body' 3 , of the
fluild and of the center of the sphere will be studied, and so without loss
of generality, motion of the sphere g 1s considered translational and the
forces acting on the sphere are replaced by their principal vector applied
at p .

Let the coordinate system Ox,x;xs be rigidly connected to the body, R
and- r are radii-vectors of any point from an immovable and from a movable
pole (¢ , respectively.

We consider the body forces acting on the fluild to have a potential
v(r, t), then the potential energy of the fluid is

o= pg Udy — pS Udv (1.1)
D E
The fluid flow is assumed to be a potential flow with a velocity poten-
tial o(r, t) . The function o(r, t) is harmonic in the region D,, occu~
pled by the fluid and bounded by the wall surfaces § and from within by
the surface ¥ of the sphere ¥ . The boundary conditions

e=(W+oxDn o s 2~ vy .(1.2)

are satisfied by the function ¢ on both surfaces.

Here n and ¢ are the unit outer normals to the surfaces § and I ,
respectively (Pig.l), ¥, 1s the absolute velocity of the point p , V, the
absolute velocity of the pole 0 , and w 1s the absolute angular veloclty
of the solid body.

The position of the system consisting of the
body B , the fluid, and the sphere Z , will be
determined by the radius-vector R, of the pole
0 , the radius-vector T, of the point p rela~-
tive to 0 (r,= R—R,) and three parameters
v, (¢ = 1,2,3) giving the angular position of the
solid body (for example, the Buler angles). The
quantities introduced are connected with the velo-
cities v,, v, and @ by the kinematic relations
(primea denote differentiation with respect to
time ¢ 1in the movable system Ox,x,xs)

dRy/dt =v,, Vp=vVo+o Xr,+ 1, (1.3)
and also by three equations connecting the projections of @ with the para~-
meters vy, (altogether 9 scalar equations for the 18 scalar variables R,,
Pyr Yis You ¥, w) . By means of these variables (coordinates and veloci~
tiee) and by the present radius-vector » one may evidently express the
position and velocity of any point of the body 5 and sphere £ (the latter
is in translational motion). In addition, the velocity potential o(r, ¢)
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subjected to conditions (1.2} and, consequently, the velocity distribution
in the fluid, are expressed by these variables, Thus, the. quantity of motion
Q , the kinetic moment K relative to the point ¢ s &nd the kinetic energy
T of the system: body » plus fluid plus sphei'e r , at any moment of
time may be exoressed as functions of R,, Pos Yes Vg, V, and @ . We note

the relations

Q = 8T / dv,, K=29T/dw (1.4)
which may be easily obtained, for example, from those given-in Chapter 9 of
[2]. Pormulas {1.4) hold if 7T 1is considered to be a function of R, »r,
Yi» Yo, @, and r/ (v, 1is excluded by means of (1.3)).

We write the equations of motion of the system in the form
dQ/dt = F, dK/dt+ vy x Q =m, (1.5)

where ¥ 18 the principal vector of all external forces acting on the sys-
tem, m, the principal moment of those forces relative to the point ¢ . We
add to (1.5) the equation of motion of the sphere 7 , which we write in

Lagrangian form 4 8T aT
T v, TR, Q (1.6)

In Equation (1.6) the energy T 1is considered to be a function of R,
R.vi, Vo, w and v, in distinction from {1.4). fThe generalized force Q
may be presented in the form

Q, =F, —0dll/ R, 1.7

Here ’, 18 the principal vector of the external forces acting on the
sphere {(not connected with fluid pressure), 0N 4is the potential energy of
the fluid (1.1); the potential energy of the body 5 1s considered inde-
pendent of the position of the sphere gz .

Thus, if 7T, Q and X are found as functions of the variables K,, n
(or R), vi» Vo, w, v, (or /), then Equations {(1.5) and (1.6) may be
formed, and together with the kinematic relations they represent a closed
syatem, It is supposed that ¥, m, and J, are expressed in the same vari-
ables.

The momentum of the whole system is determined by the formula

Q=Q° + (m— v, (1.8)

where Q° is the momentum cf a system consisting of the solid body with the
cavity D completely filled with fluid, Quantities with the superscript °
relate to this system and are considered to be known functions of the coor-
dinates and velogities of the solid body.

The kinetic energy of the system
T =T, + T, + Yymv,? (1.9)
where T, 1s the known expression for the kinetic energy of a s80lid body [ 2]}
and T, is the kinetic energy of the fluid
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Ty =30\ (w02 dv = o ($ogrds — bo 5% do) (1.10)
S z

D,
while the last term in (1.9) is the kinetic energy of the sphere fF .

Thus, it 1s necessary to find the potential ¢ , to calculate T, from
(1.10), 7 and K from (1.9) and (1.4), and Q from (1.8).

2., The Neumann problem for the function ¢ , harmonic in the region D,
and satisfying the boundary conditions (1.2), will be solved by the alterna-
tive Schwarz method. We seek the potentlal ¢ 1in the form of an infinite

series P=9°t+o+@>+ ... (2.1)

where the o' are functions harmonic in D (everywhere inside S ) and the
gak*! are functions harmonic outside the sphere ¥ (x=0,1,2,...). The func-
tion ¢° satisfies the first condition (1.2) and is the flow potential of
the fluid when the cavity 1s completely filled. The function qa‘ satisfies
the auxiliary condition

/v =vy —39°/ v on 3 (2.2)
80 that the sum of ¢° and ¢' satisfies exactly the second condition of
{1.2). Purther, terms of the series satisfy the boundary conditions

0% [ on = — 9@*-1/0n on § (k=1,2,...) (2.3)
for the functions o°* and the conditions
oL/ gv = — 89 / Ov on 3 (k=1,2..) (2.4)

for the functions g°t*!, The Neumann problem for the functions ¢®+*?!,
harmonic outside the sphere F , is solved in an elementary manner, while

the problem for the ¢°r may be solved effectively if the Green function for
the Neumann problem 1s known in the region p . The convergence of the alter-
nate Schwarz method (series (2,1)) for the Dirichlet problem has been proved
for regions of a very general form [3]; for the Neumann problem in the given
case, convergence apparently holds as well., If the series converges, then

1t is obvious that conditions (1.2) are fulfilled. We note that the Schwarz
method may also be applied in the case when F 1s not a sphere but. any other
body for which the external Neumann problem can be solved,

We write a solution for the functions ¢°**!satisfying condition

0¥+t [ v = — Bu/ dv (2.5)

onL , where u = ¢** for k3 1 (2.4) and y = ¢°— v,r for k=0 (2.2).
We introduce a coordinate system Py, y,ys With origin at the point p and
axes parallel to those in the Ox,x,x, system. Let +y, be the projection of
the unit normal v on the y,-axis; then evidently y,= va on T . We
expand the right-hand side of (2.5) in a Taylor series with center at the
point p

a1 w1 1 1
v X Em T (2 Wiyt g D Y oy D) Wadiyive + . - )
: i ij ijk (2.6)
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Here y,, Uy, ete,, are partial derivatives of u with respect to Xy 5
x, and x,, etc., taken at the point P and summed over the indices Ly Jseee
from 1 to 3. The sums in (2.6) represent successive terms in the expansion
of the harmonic function in Taylor series and so are homogeneous harmonic
polynomials [4]. On the sphere £ they may be written in the form (the Y,
i1s a spherical function)

a'n

1
=T D Ui Y - - Y = = D i ViV o Vg = Y
(n) (n)
Here the symbol (n) denotes the number of indices 1,f,...,k, 1.e. the
degree of the polynomial, and the summation is taken from 1 to 3 for each

index. The solution of the external Neumann problem for the sphere I under
condition (2.6) will be

- { -] ant? 00 a2+l
+l = —— e —
P " 2 (n + ,1)! ’1"“' Y,= Z (n — ,1)! (n + 1) r1n+12 u’ij...kvivj e V=
n=1 n=l1 (n)
oo aﬂ’n+l
= E (n— 1)1 (n+ 1) r12n+1 (2 Uij. .k yiyj L yk) (2.7)
n=1 (n)

Here ;= r — rp1s the radPus-vector of the point p (r,=g on I ).
The potential ¢° may be written in the form
9° = vor + 0,0 + 0,02 + 0,0° (2.8)
where w, is the projectlon of the vector w on the ux, {or y, ) axis, and

3! are functions harmonic in p (Zhukovskil potentials [5]) satisfying the
following condition on § @

o0/ on = (r x n); (i=1,23)

The Index ¢ on the right-hand side denotes projection of the vector on
the x,-axls.

We estimate the order of the functions ¢* and thelr derivatives in terms
of e =6/1 . Let the dimensions of the cavity te of the order of unit
length and the distance I from P to S will be of the same order, so
!~1 and g~¢c . Then ¢° and all its derivatives are of the order 0(1).
we find from (2.7) that far from the sphere g (r,~ I ~ 1, in particular,
on § ) the function ¢' and its derivatives have the order 0(e). We find
from tne same formula that for p ~ @ ~ ¢ (in particular, on 1), |p*] ~ ¢
and |vg'| ~1 . The function ¢° 1s harmonic in D , the characteristic
dimension of which 1s 0(1) and according to (2.3) has a normal derivative
of the order of €* on § . It follows from this that |@?| ~|@?| ~ €®
everywhere in J . Analogously we get |¢ék| »~'[§7¢2k| ~ €% everywhere in
D and |(p2k+1|~|v(p2’“’l | ~ e3%+3 rar from g (for r,~ 1 , in particular,
on § ), and near the sphere g (for r,~ G , in particular, on T ) we shall

have , q)2k+1[ — 83k+1’ ' v(bzku, —~ g3k
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It follows from these estimates that ¢ = ¢°+ ¢' with an accuracy up to
0(e®) on the surface £ . The function ¢° 18 described on I by a segment
of a Taylor serlies with center at the point p

¢ =0 + D0y + 5 ZJ ?9y; + O (¢) (2.9)

Here @,° = @° (rp, t), 9;°, §;;° are derivatives at p .
We find from (2.7) that

V=L@ — vp) 4, + 3 D0y, + 0 () (2.10)
i ij

on T with % = 0, taking account of the relation wu,= o, —v,,, and where
the summation 1s over all indices from 1 to 3.

By addition of (2.9) and (2.10) we get for ¢ on I
P ="+ 52 G0 — vy o Zﬁ)cpi,“’yiy,- +0@E)  (2.11)

3. We transform the expression for kinetic energy of the fluid (1.10) by
applying Green's theorem and considering that 8¢/ dn = 89°/dn on s

% 99" gs — cgupavds [
+<g () a)= e i o e+

P
2
+o(F— F)]at =1+ 10 (3.1)

% ds-<§q> ds +

The first of the integrals in (3.1)
0
Ty =5 p@(p 29 gs (3.2)

represents the kinetic energy of the fluid when it completely f1lls the
cavity and 1s considered known. This integral 1s expressed in terms of the
adjoined moments of inertia of the cavity [5], which may be calculated if
$' 1is known.

We write the second integral of (3.1) in the form

o

=10 @ [— oV + 0 (G5 — v ds (3.3)

taking into account (1.2).

We substitute here the expression for ¢° from (2.9) and for ¢ from
(2.11), and for 2¢°/3v we put the Taylor series segment analogous to (2.9),
with accuracy up to 0(e*), taking infto account the relation gv,=y, on I .
Then the expression under the integral sign in (3.3) will reduce, to an accu-
racy of ~¢®, to a simple polynomial in ¥, and the integral 1s readily cal-
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culated, giving
Ty = %PQ (VPp° ~ vp)* — %‘PQUDZ + 0 (€%) (3-4)

where the surface area I 1s if tne order of ¢ and where <y@,° is the
value of V(Po at the point P , equal to

VPp = Vo + E OAVA( (3.5)
in accordance with (2.8).

We write (1.10) in the form

T=T+10Q (U — V) +3(m—pQ o +0(H  (3.6)

taking into account (3.1) and {3.4), where 7I°= T+ T,° is the kinetic
energy of the body 5 when the cavity p 1s completely filled with fluid;
this term is considered known.

Upon expressing v, and VPp° 1in terms of w by Formulas (1.3) and
(3.5), and by differentiating according to (1.%), we find that

K=K+ 2pQ e [(Vpy° — Vi) v @1 +
+ “;"PQ BVep” — Vp) X 1p + mrpX vy + O (ef) @.7

where e, is & unit vector parallel to the ux, {or y, ) axis,

We pass over to establishment of the equation of motion for the sphere.
We represent the function [ 1n the region Z by & Taylor series, omitting
terms which after integration with respect to z in (1.1) will be of the
order of ¢ . (The volume 0 in the region F 1s of the order of ).

From (1.1) we obtain
M=o\ Udv—p{(U, + r,-0Up) dv + 0
D E

The integral over § of the second term 1s equal to zero by virtue of the
odd function r;.7Up, and the integral on D does not depend on R,. Then,

from {1.7) Q, = F, + pQuU, + O (&%) (3.8)
in which the secord term 1s an Archimedes force.

We substitute (3.6) and (3.8) into (1.6), considering that I° is inde-
pendent of the coordinates and velocity of the point p

av 3 d ) ( o o
(m + % 99)7% — 509 {gf (V") + (V9" — Vo) V] VPs } =
= F, + pQuU, + O (&) (3.9)
Differentiation with respect to ¢ traces the trajectory of the point P,
L GO Re, ) = 5 [99° Ry, O] + (v0) v4° (Ry, 1)

By taking this equality into account and omitting terme of the order of
¢®, we rewrite {3.9) in the final form

i.e.
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1 dv 3 ° .
(m + EPQ)—@E =Fp +oQuU, + 7 pQw, (3.10)

Here w: 1s the acceleration of a fluld particle which would be at p
1f the cavity were completely filled, or in other words, the derivative of
the velocity with respect to ¢ along the trajectory of the fluid particle
in the absence of the sphere F

. (VP
Wy = —— e+ (V9°V) Ve @.11)

This quantity 1s subject to the equation of fluid motion
pw® = — gp° — pvU
where p° is the fluid pressure with the cavity completely filled.

We write an expllcit expression for w by means of the Zhukovskii poten-
tials, differentiating (3.5) along the trajectory of the fluld particle

wp' = dv"—{-E - V(Ds—l—wamsv(Ds—l—

+ D) o cD,, [2 0D — (u) X Tp); ] (3.12)
8ij
In Formula (3.12) all derivatives of #' with respect to coordinates x,
are calculated at the point p . From (3.10) one may find equivalent forces
due to hydrodynamic pressure

av,
N = m‘%—F = PQVUp‘l'%PQWpo —%pﬂ—d-,ﬁ

Thue, the values of T, X and Q are determined by Formulas (3.6), (3.7)
and (1.8) to an accuracy of ~ ¢®, which guarantees high precision. Conse-
quently, Equation (1.5) and (3.10) may be established with accuracy up to e5
(the potential ¢° and values of 7°, Q° and K° are considered known, as
stated above). The equations of motion obtained are evidently equivalent to
the equations of motlon of & system comprising a solld body and a material
point P acting on each other.

The difference T — T° has the order of e3*(Q ~ g®), 1.e. the order of
the ratio of the volume of the sphere E to the cavity p . This 1s.Just
the order of perturbances in the equations of motion of the body with a fluld
on account of the sphere g (if the masses of the body and fluid are of the
same order). Hence, without loss of accuracy the equations of motion may be
integrated as follows. First we solve the equations of motion of the body
when the cavity is completely filled with fluid; 1.e. we determine the
undisturbed motion. The we integrate Equation (3.10) for motion of the
sphere g , assuming that the body motion is undisturbed. Afterwards, we
substitute the coordinates and velocities of the point P in Equation (1.5)
and determine the disturbed motion of the body with fluid.
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4, We consider certain examples, Let the fluld in the cavity be in
translational motion (V/@° = v,), in absence of the sphere gz , this may occur
elther with translational motion of the body (w = 0), or in the case of a
spherical cavity (all §'= 0). In this case the fluid, which completely
Tills the cavity, 1s equivalent to a material mass point u at the center
of inertia of the fluld. Assuming that P =0 and U = O, we find from
(3.10) and (3.12) ’

dv,, 3pQ dvo 3pQ
&t TP 2m ar ¢ vpzmvo—i—c (4.1)
where o6 1s an arbitrary constant vector,
This result may also be easily obtained from the theory of added mass,
In particular, for a bubble {m = 0)

dvp/dt = 3dvy / di

%ie. ng absolute acceleration 1s three times the absolute cavity acocelera-
on .

By substitution of (%.1) in (3.6) we find, with accuracy to an inessen-
tlal constant,
P —poy 3m—eQel . (4.2)
- 2(pQ +2m) ‘

Thus, the presence of the sphere % in the fluid (for translational
motion) 1is equivalent to a change in the fluid mass by a constant value,
If the sphere & 18 a bubble, then the equivalent mass of the cavity with
the fluid and bubble i1s equal to u - 3p01 .

We study still another example: the motlon of the sphere £ 1n an
ellipsoidal cavity
x,? 222 xg?

012 022 + 032 -

Let wvy= 0, !,a O and Uy = 0, and the motlon of the cavity be given as
a uniform rotation about an immovable axls passing through a point ? ~ the
center of symmetry of the ellipsoild., On these assumptlons Equation 3.10)
together with (3.12) take the form

420 Xr 4+ o X (0 X r) =

—a {m X ZOT 084 Y msei(bij’[z 0, ®;* — (0 % r)j]} (4.3)
8 %1 k
@ =3pQ/(pQ +2m) O<a<3) (4.4)

Here the absolute acceleration of the point P 18 expressed by a trans-
fer, a relative and a Corilolis acceleration, and the index 2. 1s omitted
everywhere. The Zhukovskii potentlals for an ellipsoidal cavlty are known

to be [5] s . Lo s .
D3 == [z 72, kg =(ay®— az?) / (a2 4+ a2?) (ks 1) (4.5)

The remaining &' are obtained from (4.5) by transposing indices. Upon
substitution of (4.,5) into (4.3) we obtain a llnear system with constant
coefficients describing the motion of the point p .

For simplicity we assume the cavity to rotate about 1ts axis of symmetry
(w, = wg= 0, wy= w). Then, after substitution of (4.5) into (#.3) and taking
projection on the x,-axes we obtain

i —2wEs — o= awk(k — 2) o (k = ks) (4.6)
#2 + 206 — 0¥ = a0’k 4 2)z, #3 =0
It is evident from (4.6) that motion of the point P along the axis of

rotation x, proceeds by inertia. Therefore, as 1t was to le expected, the
positions of equilibrium of the sphere on the axls of rotation (x,= x,= 0,
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x3= X3’ ) are unstable, and there are no other equilibrium positions of the
system (4.6).

We conslder motion of the point P 1in the plane rotation x,x; . An
elementary investigation of the characteristic equation for the first pair
of (4.6) permits one to obtain the stability conditions for the equilidrium
position x, = x3= O in the x,x, plane, These conditions (necessary and
sufficient) have the form

@1k|— B 1>a>1, 0L ki< “.7)

For fulfillment of condition (4.7) the characteristic equation has no
multiple pure imaginary roots (no dissipation in the system) and the sphere
will not depart from the axls of rotation., By transformation of (4.7) and
substitution of ¢ and x from (4.4) and (%.5) and assuming that a; > q,,
we get m 6ast s
1'> PQ >1_ (a1|+a.’)1 ’ a > ag ( '8)

For a bubble (m = O) we obtain from (4.8) the stability condition for
equilibrium in the plane of 1otation in the form

1<a /e, < (V6 —1)"=1.20

5. We consider the reaction of the solid body with a cavity containing
fluid and an air bubble to the action of shock, At a certain instant of
time let there be applied to the body impulse (shock) forces and moments
exciting instantaneous changes in the values of Vv,, w and v , as 8V,
8w and 8V, . At the same time, 7, K and Q also receive finite incre-
ments 87T, 53 and 8Q . Here the bubble can not be considered as an unde-
formable sphere. The effect of impulse forces on the surface tension may be
neglected, as well as the effects on other forces limited in value.

The hydro ¢ potential 1s obtalned at the moment of shock as a finite
increment 8p(r) . The function &8¢ 1s harmonic in D, and satisfies the
boundary congitions (¢ 1s an arbitrary constant)

p/on=(0Ovp+d X Hn oS, dg=C on I (5.1)
The second condition of (5.1) expresses the absence of impulse action on

the surface ¢t ,

The boundary problem for 8p may be solved by the Schwarz method, on the
assumption, analogous to (2.1)

O = 0¢° + O¢' + 8¢* + . .. (5.2

The functions 8¢°" are harmonic in p and 8¢°**! outside of F , while
8¢° satisfies the first condition of (5.1) and the remalning functions are
subjected to the conditions

2k ak-1
ao;Pn - _ aégn on S, w&lﬂl — _b‘p2k+6¢pﬂk on 3 (5.3)

for #p™ and for &¢°**!, respectively. The index p refers to the value
at the polnt p and the constant terms oq;”‘ are chosen for convenlence.
The functions &¢' have the same order with respect to ¢ as ¢! in Section
2.
The potential 8p° 12 determined by an equation analogous to (2.8)
0¢° = dvyr 4+ 80, D! + 300,02 4 S0, 03
We write 8g', first expanding condition (5.3) for nx =1 in a Taylor

serles centered at p
1
== Z 3¢,°yy — ST ZO(P{,“’%% — e (5.4)
i i3

Here 8gq,", oo, ;s ete., denote corresponding derivatives at P . The solu-
tion to the external Dirichlet problem for the sphere & with boundary con-
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dition expressed by (5.4) 1is given by a formula analogous to (2.7)
an+1

o
QI N I A, °
b 2} nlp 2L ( Z’S‘Pﬁ‘_‘kyiyj <o Yk ) (5.5)
n=1 1 n)
We "calculate the increment in kinetic energy of the fiuld from Formula

1
oT. =70\ (0 + Vo9 — (ol dv = 55| Ve + vop) Topav

D, D,
BX transforming this expression analogously to
(3.1), and by use of Green's theorem and the egua-
lities
V4 309 _ adg° ,
‘ T S =0 e Z
A ‘ we arrive at Formula
ll N 1
( ’ 6T, = 6T,° — 5 p?ﬁ (29° -+ 89°%) (vi78e) ds {(5.6)
b
“ where 87,° 1is the increment in 7,° from (3.2).

We find the function

T = Tde° + Vit + O (9

which enters into the integral of {5.6), by expansion V99° in aTaylor series
analogous to (2.9) and calculation $7épt by differentiation of (5.5).

After such calculations we obtain on the surface %

Fig. 2

Ty

o, 5 o 7 °
Top = 5 [3 2080 + 5 2) 00" vy + Zﬁ%mwyﬂk] +oE) 6D
i ij ijk

The nature of the deformation of a spherical bubble under shock is seen,
Points on the surface I acquire an additional velocity from the shock
directed along the radius of the sphere and equal as a first approximation
to 3u + cos § (u is the additional velocity which would be obtained for
the same shock on the fluid particle at P inside a completely filled
cavity, 8 1s the angle measured from the direction of u ). Fig.2 shows
a dlagram of the velocities acquired on the bubble surface during shock,
Such a distribution agrees with the results of exprrimental studies of the
motion of a bubble in a fluid (see, e.g. [7]).

By use of (5.7), and by representing ¢° by Formula (2.9) and 8¢° b% an
analogous formula, it 1s not difficult to calculate the integral in (5.6),
after which the increment in kinetic energy of the whole system may be wtit~

ten in the form
8 = 8T° — 3/2pQ (2V9,° + Vop,°) VO¢,* + O (¢%) (5.8)

We now consider the effect of a shock in the case where the bubble remains
a rigid undeformable sphere with mass m = O , For this one may use Formulas
of Section 3. Substitute for the derivatives of the veloclties with time in
Equations (3.10) and (3.12) the finite increments at the moment of shock, and
neglect the impulses of the forces Fp, pQ/U at that interval of time. Then
we obtain

bv, = 3V0p,° = 3 (dve + X 80,V D) (5.9)

It is not difficult now, by using (5.9) and (3.6), to calculate the incre-
ment &7 at the moment.of shock. After a simple calculation we obtain an
expression of an accuracy comparable with (5.8). Consequently, with accuracy
up to terms in ¢, the behavior of the system in question during shock does
not depend on whether the initially spherical bubble is considered to be
deformable (with a free surface) or rigid; then the increments #Q, *K may
be calculated with an accuracy up to ef by Formulas (1.8) and (3.7S,tak1ng
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into account (5.9) and setting m = O . The calculation gives
8Q = 3Q° — 3pQVég,°, 8K = 8K° — 3pQ Y e, (VO - V59,
8

These formulas allow the behavior of the system durlng shock to be cal-
culated.

6. We note that Equation (3.10) holds for an accuracy of ~ &%~ g2/-2
also in the case where the sphere £ moves in any potential flow with a
characteristic dimension 1 , if I>a (not necessarily inside certain cavi-
ties). By making use of the equation of fluid motion we write Equation (3.10)
in the form

(m 4 2pQ) dv,/dt =F,— 12 pQV U — 3/ QUp° (6.1)

where p° as before 1s the pressure at P 1in the undisturbed flow, i.e. in
the absence of the sphere. Through Equation (6.,1) one may study the motion
of a small rigid sphere in the arbitrary potential flow of an ideal incom-
pressible fluid.

Let the undisturbed nmotlon of the fluld be established, the force pre
a potential force(Fp=='—“7VVL and let ¥ and U be independent of the
time. Then the equation of motion for the sphere £ has a first integral

Ya(m +1apQv 2+ ®=C,  @®=W+12pQU+2:Qp°

where § plays the role of potential energy and where ° may be expressed
by the velocity v° of the undisturbedq flow by means of the Bernoulli inte-
gral,

The equilibrium positions of the sphere in the flow correspond to station-
ary points of the function @ (where Y@ = 0), and their stability is deter-
mined by the character of the statlonary points. Let the potential of the
external forces be harmonic functions ZAW = AU = 0) such as gravity force,
for example . It is shown on p.62 of [6] that in this case Ap°<0, every-
vhere and consequently A®<0, i.e. ® 1is a superharmonic function. It is
known that the minimum of such functions 1s achlieved on the boundary of the
region [3] and that internal stationary points are not strict minima. There-
fore, for the assumptlons made, one must expect in the majority of cases to
have an linstabllity in the equilibrium position of the sphere inside the
steady potential flow of an ideal incompressible fluid.
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